

Beyond “git commit”™

Tipps und Tricks fur Git-Ninjas

04

Merge Requests aktualisieren
Agenda Commits auf Branches

anwenden

»Shit, I lost my work®

History durchsuchen

Binare Suche nach Bugs

Honorable Mentions

Wie aktualisiere 1ich
einen Merge Request?

git-rebase

feature main

T
@

07

git merge main

feature

main

feature main

T
@

feature main

git rebase main

...Q/

Wie raume ich einen
Merge Request auf?

git-rebase -i

011

git rebase -i

pick 164aaef Add feature Y
pick dc@bc36 Fix typo
ce5bc54 Fix feature Y
20a82ef Fix CI
ck 31ad9f3 Actually fix CI

Wo ist ...?

git log (-S)

“Shit, I lost my work!”

git reflog

Wo kommt der Bug her?

git bisect

Gooed Bad
I
Good Bad
a8

@ﬂ

Bad

https://git-scm.com/docs/git#_git_commands

017

git-whatchanged

NAME

git-whatchanged - Show logs with difference each commit introduces

SYNOPSIS

git whatchanged <option>..

DESCRIPTION
Shows commit logs and diff output each commit introduces.

New users are encouraged to use git-log[1] instead. The whatchanged command is essentially the same
as git-log[1] but defaults to show the raw format diff output and to skip merges.

The command is kept primarily for historical reasons; fingers of many people who learned Git long before
git log was invented by reading Linux kernel mailing list are trained to type it.

Examples

git whatchanged -p v2.6.12.. include/scsi drivers/scsi
Show as patches the commits since version v2. 6 . 12 that changed any file in the include/scsi or

drivers/scsi subdirectories

git whatchanged --since="2 weeks ago" -- gitk
Show the changes during the last two weeks to the file gitk. The "--" is necessary to avoid confusion
with the branch named gitk

018

git-notes

NAME

git-notes - Add or inspect object notes

SYNOPSIS

git
git

notes
notes

<object>]

git
git

notes
notes

<object>]

git
git
git
git
git
git
git
git

notes
notes
notes
notes
notes
notes
notes
notes

[list [<object>]]

add [-f] [--allow-empty] [-F <file> | -m <msg> | (-c | -C)
[<object>]

copy [-f] (--stdin | <from-object> [<to-object>])
append [--allow-empty] [-F <file> | -m <msg> | (-c | -C)
[<object>]

edit [--allow-empty] [<object>]

show [<object>]

merge [-v | -q] [-s <strategy>] <notes-ref>

merge —--commit [-v | -q]

merge --abort [-v | -q]

remove [--ignore-missing] [--stdin] [<object>..]

prune [-n] [-V]

get-ref

DESCRIPTION

Adds, removes, or reads notes attached to objects, without touching the objects themselves.

By default, notes are saved to and read from refs/notes/commits , but this default can be
overridden. See the OPTIONS, CONFIGURATION, and ENVIRONMENT sections below. If this ref does
not exist, it will be quietly created when it is first needed to store a note.

A typical use of notes is to supplement a commit message without changing the commit itself. Notes can

be shown by git log along with the original commit message. To distinguish these notes from the

message stored in the commit object, the notes are indented like the message, after an unindented line

saying "Notes (<refname>):" (or "Notes:" for refs/notes/commits).

019 git-send-email

NAME

git-send-email - Send a collection of patches as emails
SYNOPSIS

git send-email [<options>] <file|directory>..
git send-email [<options>] <format-patch options>
git send-email --dump-aliases

DESCRIPTION

Takes the patches given on the command line and emails them out. Patches can be specified as files,
directories (which will send all files in the directory), or directly as a revision list. In the last case, any
format accepted by git-format-patch[1] can be passed to git send-email, as well as options understood by
git-format-patch[1].

The header of the email is configurable via command-line options. If not specified on the command line,
the user will be prompted with a ReadLine enabled interface to provide the necessary information.

There are two formats accepted for patch files:
1. mbox format files
This is what git-format-patch[1] generates. Most headers and MIME formatting are ignored.
2. The original format used by Greg Kroah-Hartman’s send_lots_of_email.pl script

This format expects the first line of the file to contain the "Ce:" value and the "Subject:" of the message

as the second line.

020 git-instaweb

NAME

git-instaweb - Instantly browse your working repository in gitweb

SYNOPSIS

git instaweb [--local] [--httpd=<httpd>] [--port=<port>]
[--browser=<browser>]
git instaweb [--start] [--stop] [--restart]

DESCRIPTION

A simple script to setup gitweb and a web server for browsing the local repository.

021

git-worktree

NAME

git-worktree - Manage multiple working trees

SYNOPSIS

git

git
git
git
git
git
git
git

worktree

worktree
worktree
worktree
worktree
worktree
worktree
worktree

add [-f] [--detach] [--checkout] [--lock [--reason <string>]]
[-b <new-branch>] <path> [<commit-ish>]

list [-v | --porcelain [-z]]

lock [--reason <string>] <worktree>

move <worktree> <new-path>

prune [-n] [-V] [--expire <expire>]

remove [-f] <worktree>

repair [<path>..]

unlock <worktree>

DESCRIPTION

Manage multiple working trees attached to the same repository.

A git repository can support multiple working trees, allowing you to check out more than one branch at a

time. With git worktree add anew working tree is associated with the repository, along with

additional metadata that differentiates that working tree from others in the same repository. The working

tree, along with this metadata, is called a "worktree".

This new worktree is called a "linked worktree" as opposed to the "main worktree" prepared by git-init[1]

or git-clone[1]. A repository has one main worktree (if it’s not a bare repository) and zero or more linked

worktrees. When you are done with a linked worktree, remove it with git worktree remove .

022

appmotion

